
Diyala University
College of Engineering Fourth Year 2012/2013
Computer & Software
Engineering Department

Public Key Cryptography

Chapter 3/Part1

PRESENTED BY

DR. ALI J. ABBOUD

3.1 Objectives

2

• History
• Mathematical Background
 Arithmetic Modulus
 Remainder Arithmetic
 Factors
 Prime and Compound Numbers
 Power and base
 Laws of Indices
 Modular Inverse

• Public Key Cryptography
• Markel's Knapsack Algorithm
• RSA Algorithm

3.2 History

3

3.3 Mathematical Background

4

• Arithmetic Modulus
• Remainder Arithmetic
• Factors
• Prime and Compound Numbers
• Power and Base
• Laws of Indices
• Modular Inverse

3.3.1 Arithmetic Modulus

5

6

3.3.1 Arithmetic Modulus

3.3.1 Arithmetic Modulus

7

3.3.1 Arithmetic Modulus

8

9

3.3.1 Arithmetic Modulus

10

3.3.1 Arithmetic Modulus

11

3.3.2 Remainder Arithmetic

12

3.3.2 Remainder Arithmetic

13

3.3.3 Factors

14

3.3.4 Prime and Compound Numbers

15

3.3.5 Power and Base

16

3.3.6 Laws of Indices

17

3.3.7 Modular Inverse

3.4 Public Key Cryptography

18

 Public-key algorithms are asymmetric algorithms and, therefore, are based
on the use of two different keys, instead of just one. In public-key
cryptography, the two keys are called the private key and the public key

 Private key: This key must be know only by its owner.

 Public key: This key is known to everyone (it is public)

 Relation between both keys: What one key encrypts, the other one

decrypts, and vice versa. That means that if you encrypt something with my
public key (which you would know, because it's public :-), I would need my
private key to decrypt the message.

 Public Key Cryptography can be used for:
1) Data Encryption.
2) Digital signatures.
3) Digital certificates.
4) Key Exchange.

3.4 Public Key Cryptography

19

3.4 Public Key Cryptography

20

3.4 Public Key Cryptography

21

3.4 Public-Key Cryptography

22

3.4.1 A secure conversation using public-
key cryptography

23

• In a basic secure conversation using public-key cryptography, the sender encrypts
the message using the receiver's public key. Remember that this key is known to
everyone.

• The encrypted message is sent to the receiving end, who will decrypt the message
with his private key. Only the receiver can decrypt the message because no one else
has the private key. Also, notice how the encryption algorithm is the same at both
ends: what is encrypted with one key is decrypted with the other key using the
same algorithm.

Key-based asymmetric algorithm

3.4.2 Pros and Cons of Public-Key Systems

24

• Public-key systems have a clear advantage over symmetric algorithms: there is no need

to agree on a common key for both the sender and the receiver.

• As seen in the previous example, if someone wants to receive an encrypted message, the

sender only needs to know the receiver's public key (which the receiver will provide;

publishing the public key in no way compromises the secure transmission).

• As long as the receiver keeps the private key secret, no one but the receiver will be able

to decrypt the messages encrypted with the corresponding public key.

• This is due to the fact that, in public-key systems, it is relatively easy to compute the

public key from the private key, but very hard to compute the private key from the

public key (which is the one everyone knows). In fact, some algorithms need several

months (and even years) of constant computation to obtain the private key from the

public key.

3.4.2 Pros and Cons of Public-Key Systems

25

• Another important advantage is that, unlike symmetric algorithms, public-key
systems can guarantee integrity and authentication, not only privacy. The basic
communication seen above only guarantees privacy. We will shortly see how
integrity and authentication fit into public-key systems.

• The main disadvantage of using public-key systems is that they are not as fast as
symmetric algorithms.

3.5 Merkle’s Knapsack Algorithm

26

• The first algorithm for generalized public-key encryption was the knapsack algorithm
developed by Ralph Merkle and Martin Hellman.

• It could only be used for encryption, although Adi Shamir later adapted the system for

digital signatures.

• Knapsack algorithms get their security from the knapsack problem, an NP complete

problem. Although this algorithm was later found to be insecure, it is worth examining
because it demonstrates how an NP-complete problem can be used for public-key
cryptography.

3.5 Merkle’s Knapsack Algorithm

27

• The knapsack problem is a simple one. Given a pile of items, each with different
weights, is it possible to put some of those items into a knapsack so that the knapsack
weighs a given amount?

• More formally: Given a set of values M1 , M2 ,..., Mn, and a sum S, compute the values

of bi such that S= b1M1+ b2M2+ ...+ bnMn

• The values of bi can be either zero or one. A one indicates that the item is in the

knapsack; a zero indicates that it isn’t.

• For example, the items might have weights of 1, 5, 6, 11, 14, and 20. You could pack a

knapsack that weighs 22; use weights 5, 6, and 11. You could not pack a knapsack that
weighs 24. In general, the time required to solve this problem seems to grow
exponentially with the number of items in the pile.

• The idea behind the Merkle-Hellman knapsack algorithm is to encode a message as a

solution to a series of knapsack problems. A block of plaintext equal in length to the
number of items in the pile would select the items in the knapsack (plaintext bits
corresponding to the b values), and the ciphertext would be the resulting sum.

3.5 Merkle’s Knapsack Algorithm

28

• What is the easy knapsack problem? If the list of weights is a superincreasing sequence,
then the resulting knapsack problem is easy to solve. A superincreasing sequence is a
sequence in which every term is greater than the sum of all the previous terms. For
example, {1, 3, 6, 13, 27, 52} is a superincreasing sequence, but {1, 3, 4, 9, 15, 25} is not.

• The solution to a superincreasing knapsackis easy to find. Take the total weight and

compare it with the largest number in the sequence. If the total weight is less than the
number, then it is not in the knapsack. If the total weight is greater than or equal to the
number, then it is in the knapsack.

• Reduce the weight of the knapsack by the value and move to the next largest number in

the sequence. Repeat until finished. If the total weight has been brought to zero, then
there is a solution. If the total weight has not, there isn’t.

3.5 Merkle’s Knapsack Algorithm

29

For example, consider a total knapsack weight of 70 and a sequence of weights of {2, 3, 6,
13, 27, 52}.

• The largest weight, 52, is less than 70, so 52 is in the knapsack.

• Subtracting 52 from 70 leaves 18. The next weight, 27, is greater than 18, so 27 is not in

the knapsack. The next weight, 13, is less than 18, so 13 is in the knapsack.

• Subtracting 13 from 18 leaves 5. The next weight, 6, is greater than 5, so 6 is not in the

knapsack.

• Continuing this process will show that both 2 and 3 are in the knapsack and the total

weight is brought to 0, which indicates that a solution has been found.

• Were this a Merkle-Hellman knapsack encryption block, the plaintext that resulted from

a ciphertext value of 70 would be 110101.

3.5.1 Creating the Public Key from the Private Key of
 Merkle’s Knapsack Algorithm

30

• To get a normal knapsack sequence, take a superincreasing knapsack sequence, for
example {2, 3, 6, 13, 27, 52}, and multiply all of the values by a number n,mod m. The
modulus should be a number greater than the sum of all the numbers in the sequence:
for example, 105. The multiplier should have no factors in common with the modulus:
for example, 31.

• The normal knapsack sequence would then be

 2 * 31 mod 105 = 62
 3 * 31 mod 105 = 93
 6 * 31 mod 105 = 81
 13 * 31 mod 105 = 88
 27 * 31 mod 105 = 102
 52 * 31 mod 105 = 37

• The knapsack would then be {62, 93, 81, 88, 102, 37}.

• The superincreasing knapsack sequence is the private key.

• The normal knapsack sequence is the public key.

3.5.2 Encryption for Merkle’s Knapsack Algorithm

31

To encrypt a binary message, first break it up into blocks equal to the number of items in
the knapsack sequence. Then, allowing a one to indicate the item is present and a zero to
indicate that the item is absent, compute the total weights ofthe knapsacks—one for every
message block.

For example, if the message were 011000110101101110 in binary, encryption using the
previous knapsack would proceed like this:

message = 011000 110101 101110

011000 corresponds to 93 + 81 = 174

110101 corresponds to 62 + 93 + 88 + 37 = 280

101110 corresponds to 62 + 81 + 88 + 102 = 333

The ciphertext would be
174,280,333

3.5.3 Decryption for Merkle’s Knapsack Algorithm

32

• A legitimate recipient of this message knows the private key: the original
superincreasing knapsack, as well as the values of n and m used to transform it into a
normal knapsack. To decrypt the message, the recipient must first determine n-1 such
that n(n-1) 1 (mod m). Multiply each of the ciphertext values by n-1 mod m, and then
partition with the private knapsack to get the plaintext values.

• In our example, the superincreasing knapsack is {2, 3, 6, 13, 27, 52}, m is equal to 105,

and n is equal to 31. The ciphertext message is 174, 280, 333. In this case n-1 is equal to
61, so the ciphertext values must be multiplied by 61 mod 105.

 174 * 61 mod 105 = 9 = 3 + 6, which corresponds to 011000

 280 * 61 mod 105 = 70 = 2 + 3 + 13 + 52, which corresponds to 110101

 333 * 61 mod 105 = 48 = 2 + 6 + 13 + 27, which corresponds to 101110

• The recovered plaintext is 011000 110101 101110.

3.6 RSA Algorithm

33

• One of the first successful responses to the challenge was developed in 1977
by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in
1978. The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned
supreme as the most widely accepted and implemented general-purpose
approach to public-key encryption.

• The RSA scheme is a block cipher in which the plaintext and ciphertext are

integers between (0) and (n – 1) for some (n). A typical size for (n) is (1024)
bits, or (309) decimal digits. That is, . We examine RSA in
some detail, beginning with an explanation of the algorithm. Then we
examine some of the computational and cryptanalytical implications of RSA.

• RSA makes use of an expression with exponentials. Plaintext is encrypted in

blocks, with each block having a binary value less than some number n. That
 is, the block size must be less than or equal to ; in practice, the
 block size is I bits, where . Encryption and decryption are of the
 following form, for some plaintext block M and ciphertext block C.

3.6.1 Greatest Common Divisor (gcd)

34

3.6.2 Euclidean Algorithm

35

3.6.3 RSA Terms

36

The following notation is used consistently throughout:

• A public key is represented by (e).
• A private key is represented by (d).
• Plaintext message is represented by (M).
• Ciphertext message is represented by (C).
• Public key pair
• Private key pair
• Parameter is used to adjust RSA algorithm (n).

3.6.4 RSA Key Generation

37

3.6.5 RSA Encryption and Decryption

38

3.6.6 RSA Encryption and Decryption

39

3.6.7 RSA Processing of Multiple Blocks

40

3.6.8 Security of RSA Algorithm

41

Four possible approaches to attacking the RSA algorithm are

• Brute force: This involves trying all possible private keys.

• Mathematical attacks: There are several approaches, all equivalent in effort to
 factoring the product of two primes.

• Timing attacks: These depend on the running time of the decryption algorithm.

• Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

3.6.8 Security of RSA Algorithm

42

3.6.8 Security of RSA Algorithm

43

3.6.9 Procedure for Picking Random Number

44

The procedure for picking a prime number is as follows:

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter.
If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

In next lecture, we will explain how:

1. To do primality test using Miller-Rabin method.

2. To find modular inverse using extended Euclid’s algorithm.

End of Chapter 3/Part1

45

