Diyala University
College of Engineering
Computer & Software
Engineering Department

Fourth Year 2012/2013

Public Key Cryptography

Chapter 3/Part1l

PRESENTED BY
DR. ALl J. ABBOUD

3.1 Objectives

* History

 Mathematical Background
s* Arithmetic Modulus
Remainder Arithmetic

Factors

Prime and Compound Numbers
Power and base

» Laws of Indices

Modular Inverse

* Public Key Cryptography
* Markel's Knapsack Algorithm
* RSA Algorithm

)

e

*

e

*

e

*

e

*

o’

e

*

3.2 History

For many centuries secret messages had to be transmitted by using a
key and/or method known only to those who were meant to share in the
contents of those messages. Clearly, with such systems, there were always
difficulties in distributing these keys or systems so that they did not fall
into the wrong hands.

A breakthrough was made (in 1977) by Rivest, Shamir and Adleman
(which is why the initials RSA are often attached to this system), when
they devised a sytem using two keys. One key is used to put the message
into cipher, and this key can be broadcast to the world so there is no
distribution problem. This key is known as the Public Key. In addition to
the Public Key another number (known as the modulus)is also published.
The other Key, which is needed to decipher the message, is kept secret
by the individual(s) for whom the message(s) is, or are, intended.

The system, based on some relatively simple ideas in modulo
arithmetic, will be explained here by means of a numerical example,
using only the smallest numbers it is possible to use. First of all it is
necessary to set up the necessary numbers which will be used, by following
this routine.

3.3 Mathematical Background

* Arithmetic Modulus

* Remainder Arithmetic

* Factors

* Prime and Compound Numbers
* Power and Base

* Laws of Indices

* Modular Inverse

3.3.1 Arithmetic Modulus

Modulo arithmeticis also known as clock arithmetic, orremainder arithmetic,
and there is a very good reason for both of those names as we shall see.
Modulo arithmetic is a form of arithmetic which uses only a limited set of the
whole numbers {0,1,2,3,4,5,6,7...... }. It is always defined by the size of
the limited set to be used, and that size is called the modulus.

A modulus of n means that the first » elements of the whole-number set must

be used.

For example: A modulus of 3 means use 0, 1, 2
A modulus of 6 meansuse 0, 1.2.3. 4.5
A modulus of 20 means use 0, 1. 2.3.4.5....17,18,19

Note

« The set to be used always starts with 0

« No numbers may be left out

» The set ends with the number which is 1 less than the modulus

3.3.1 Arithmetic Modulus

For example: 4 + 5 can be modelled as

o 1 2 3 4 5 6 7 8 9 10 11 12 13
™ ™

Start count on 5 and Finish

In modulo arithmetic the equivalent arrangement of the number line requires
the same limited set of numbers to be repeated
For example: In modulo 5

o 1 2 3 4 0 1 2 3 4 0 1 2 3
™ ™

Start count on 5 and Finish
or 1n modulo 6

o 1 2 3 4 5 0 1 2 3 4 5 0 1
™ ™
Start count on 5 and Finish
« The answer clearly depends upon the size of the modulus
« The starting number must be less than the modulus (for the moment)
« The number of places to be counted on can be bigger than the modulus

3.3.1 Arithmetic Modulus

0
4 1 > 1
3 1
4 2
3 2
2 3
modulo 4 modulo 5 modulo 6

For example: What 1s 6 + 8 in modulo 5?
6 =0 + 6 so, starting at 0 and counting on 6 places finishes at 1
8 =0 + 8 so. starting at 0 and counting on 8 places finishes at 3
And 6+ 8 becomes 1+ 3 in module 5 which 1s 4.
Another way it can be done is by first adding the given numbers (6 + 8) in the
usual way (= 14) and then changing the answer into modulo 5
14 =0 + 14 so, starting at 0 and counting on 14 places finishes at 4

3.3.1 Arithmetic Modulus

2 3 4 5

2 3 4 5

modulo 6

2 3 4
2 3 4

modulo 5

modulo 4

1
1

0
0

1

2 3 4 50

_1

2
3

1

2

1

2 3 4

1

1
1

0
0

1

0
1

2 3 40

202 3 4 5 0
313 4 5 0

212 3 4 0 1
44 5 0

33 4 0
4 4 0

2
3

1

2

1

0
1

2 3 0

1

1

2

1

+ 0 1 2 3

1

2/ 2 3 0
313 0

515 0

3.3.1 Arithmetic Modulus

As with addition, we must first see how multiplication works in ‘normal’ arithmetic.
Consider the statement 3 x 4

This means, “put together 3 lots of 4” (or 4 lots of 3)

In other words, 3 x 4 is a short way of writing4 +4 +4 (or3+ 3 + 3 +3)

On the number line, 4 + 4 + 4 can be modelled as

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N +4 N +4 N +4 4\
Start Finish
And we can see that the answer is 12 (which is hardly a surprise!)
To do the same sum in modulo arithmetic needs the modulus to be stated.

0
We will evaluate 3 x 4 in modulo 5 by

counting 4 + 4 + 4 on a modulo 5 clock 4 1
First, 4 + 4 takesusto 3

then, 3 + 4 takesusto 2

S0,3 x4 (mod?3)is 2

[One for you. Count 3 + 3 + 3 + 3 on the same clock]

3.3.1 Arithmetic Modulus

modulo 6

modulo 5

modulo 4

2 3 4 5

1

0

2 3 4 5

1

0

1

b 4

1 2 3 4

0

0/0 0O 0O 0O O O

1

000 0 0 0 O

1 2 3 4

0

2|0 2 4 0 2 4
3/0 3 0 3 0 3
410 4 2 0 4 2
K10 5 4 3 2

3
2

1

1

4

1

3|0 3

X

2|0 2 4

1

X 01 2 3

00 0 0 O

2|0 2 0 2
3/0 3 2

4/ 0 4 3 2

modulo 6

modulo 5

modulo 4

0/0 0 0O O

2 4 2 4 2

2
3

1
1

3|3 3 3 3
414 4 4 4

00 0 0 O

2|4 3
3|4 2

0/0 0 O O

2/ 0 0 0 O

10

3.3.2 Remainder Arithmetic

Suppose we want 4 x 5 in modulo 6
We know that 4 x 5 = 20, but what is it in modulo 67
Thinking of the modulo 6 clock, starting at 0, every time we
move 6 places we get back to O
So, 6, 12, 18 will all get us back to O,
which leaves only 2 places more to get to 20
This is the same as saying,
“Count in 6's and stop when you are about go past
the number you have (in this case 20), then
whatever you have left (in this case 2) will be the
number you want.”
Or, in a much shorter phrase:
“Divide by 6 and keep the remainder.”
20 = 6 = 3 remainder 2
It is this ‘trick’ which gives modulo arithmetic its other name of
remainder arithmetic
Formally it is written:
20 =2 (mod 6)
Note the symbol is = which is read as “is congruent to”
and not = which is read as “eauals”

11

3.3.2 Remainder Arithmetic

One number is said to be a multiple of another number if the first number is
equal to the second number multiplied by some whole number.
For example. 12 1s a multiple of 4 since 12 =4 < 3
20 1s a multiple of 5 since 20 =5 < 4

« A number is considered to be a multiple of itself since x = x x 1

Any division sum is made up of 4 parts, all of which are named.
The number which has to be divided, or shared out, is called the dividend.
The number which must do the dividing, is called the divisor.
The number giving the answer, is called the quotient.
The number giving the amount left over, is called the remainder.
dividend + divisor = quotient + remainder
For example: In the sum 27 ~ 4 = 6 with 3 left over
27 1s the dividend
4 1s the divisor
6 1s the quotient
3 1s the remainder.
+ The remainder can be zero.

12

3.3.3 Factors

One number is said to be a factor of another number if it divides into it exactly.

For example: 3 1s a factor of 6; 4 1s a factor of 12;
215 a factor of 18; and so on

Note

+ 1is a factor of ALL other numbers.

« Every number is a factor of itself.

A number may have several factors.

For example: 12 has the factors 1,2,3,4,6, 12
16 has the factors 1,2.4.8.16
25 has the factors 1, 5, 25
17 has the factors 1,17

Note
+ Every number, except 1, has at least two factors.

13

3.3.4 Prime and Compound Numbers

A prime number is a humber which has two, and only two, factors.
For example: The first 15 prime numbers are
2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
« 1is NOT a prime number (it has only one factor).
« There is no end to the list of prime numbers.
« Numbers (other than 1) which are NOT prime are compound numbers.
- Prime numbers are usually called just ‘primes’.

Primes are thought of as the ‘building blocks’ for numbers in the sense that all
the other numbers can be made from them by using multiplication.
For example: 12 =2 <2 =3 which can be written 2% x 3
20 =2x2x35 or 22 x5
25 =5 x5 or 52
15600 =2 x2x2x2x3x5x5x13 or 2% x3x5% x13
« There is only ever one way this can be done.
- A re-arrangement of the primes is NOT a different way.

14

3.3.5 Power and Base

In working only with positive whole numbers a power, or index, is written as a
superscript to some other number to indicate how many of the other numbers
are to be multiplied together. The other number is called the base.
For example: In 2° the power 1s 3 and the base 15 2:
so 1t means that 3 lots of 2 have to be multiplied together.
2 x 2 %2 which =8
3 means 3 x 3 which=9
5% means 5 x 5 which =25
3° means 3 x 3 x 3 which=27
7> means 7 x 7 x 7 x 7 x 7 which= 16807

« |f the power is 0, the answer is always 1 (958° = 1)
« |f the power is 1, the answer is the number itself (37" = 37)

15

3.3.6 Laws of Indices

An operation (such as + - x =) which combines two numbers is said to be
commutative if the order in which the two numbers are placed makes no
difference to the answer.
For example. addition is commutative since 3 +4 =4 +3
multiplication is commutative since 2 < 5=35 x 2
subtraction is not commutative since 7 -1 #1 -7
division is not commutative since 6 +3#3 + 6

The three principal rules which determine how numbers written using index
notation may be combined are known as the laws of indices.

They are
prxpr=prin prepr=pmon o (bmn =
Two special cases which follow from these are ;
b0 =1 b=
For example: 2% < 20=2376 =29=5]2 22+22=2°-2=23=8
Note

« The two numbers being combined must have the same values for b

16

3.3.7 Modular Inverse

In madular arithmetic, the modular multiplicative inverse of an integer a modulo m is an integer x such that

i =1 (modm)

That is, 1t is the multiplicative inverse in the field of integers modulo m, denoted Zm This is equivalent to
-1
ar=aa =1 (modm).
Some applications may include x outside Zm

The muttiplicative inverse of 8 madulo m exists if and only if & and m are caprime {i.e., if ged{g, m) = 1). Ifthe modular multiplicative inverse of @ modulo m exists, the aperation of
division by a modulo m can be defined as muttiplying by the inverse, which is in essence the same concept as dvision in the field of reals.

Suppose we wish to find modular multiplicative inverse x of 3 modulo 11.
37'=2 (mod 11)
This is the same as finding x such that
3r=1 (mod 11)
Working in Z1 1 we find one value of x that satisfies this congruence is 4 because
3(4)=12=1 (mod 11)
and there are no other values of x in Ellthat satisfy this congruence. Therefore, the modular multiplicative inverse of 3 modulo 11 is 4.

Once we have found the inverse of 3 in ZIL we can find other values of x in 7, that also satisfy the congruence. They may be found by adding multiples of m = 11 to the found
inverse. Generalizing, all possible x for this example can be formed from

A4 (11-2),2€Z
yielding {....-18.-7.4.15.26.._).

17

3.4 Public Key Cryptography

0

** Public-key algorithms are asymmetric algorithms and, therefore, are based
on the use of two different keys, instead of just one. In public-key
cryptography, the two keys are called the private key and the public key

** Private key: This key must be know only by its owner.

+* Public key: This key is known to everyone (it is public)

» Relation between both keys: What one key encrypts, the other one
decrypts, and vice versa. That means that if you encrypt something with my
public key (which you would know, because it's public :-), | would need my
private key to decrypt the message.

» Public Key Cryptography can be used for:

1) Data Encryption.

2) Digital signatures.

3) Digital certificates.

4) Key Exchange.

3.4 Public Key Cryptography

Table 9.2. Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes
Elliptic Curve Yes Yes Yes
Diffie-Hellman No No Yes

DSS No Yes No

19

3.4 Public Key Cryptography

Table 9.1. Conventional and Public-Key Encryption

Conventional Encryption

Public-Key Encryption

Meeded to Work:

1. The same algorithm with the
samea key is used for
encryption and decryption.

2. The sender and receiver must
share the algorithm and the
ke,

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at
least impractical to decipher a
message if no other information
is available.

3. Knowledge of the algorithm
plus samples of ciphertext must
be insufficient to determine the
by,

Needed to Work:

1.

2.

Cne algorithm i1s used for
encryption and decryption with
a pair of keys, one for
encryption and one for
decryption.

The sender and receiver must
each have one of the matched
pair of keys {(not the same
onej.

Meeded for Security:

1.

Cne of the two keys must be
kept secret.

It must be impossible or at
least impractical to decipher a
message if no other information
is awvailable.

Knowledge of the algorithm
plus one of the keys plus
samples of ciphertext must be
insufficient to determine the
other key.

20

3.4 Public Key Cryptography

Roy’'s Private

Key ick's

Public
Key

Roy’s Private
Key

3.4 Public-Key Cryptography

Data flow from Roy To
Rick

: Internet
>

Privae Data flow from Rick
i, To Roy

3.4.1 A secure conversation using public-

key cryptography

In a basic secure conversation using public-key cryptography, the sender encrypts
the message using the receiver's public key. Remember that this key is known to
everyone.

The encrypted message is sent to the receiving end, who will decrypt the message
with his private key. Only the receiver can decrypt the message because no one else
has the private key. Also, notice how the encryption algorithm is the same at both
ends: what is encrypted with one key is decrypted with the other key using the
same algorithm.

Sender | Receiver Key-based asymmetric algorithm
Receiver's Receiver's

O—= ==

L o L

Tobe, arnot ta - Encryption - FERESEL? _rEm:r[.rption. o | Tobe arnetbs
e, that i the Algorithm E5cHEn? S Algorithm b, That is the
queston, whethar FEAESgL? |] quedtan, whethar

lia maabdar in the, Eil;'*"n.'?"!¢¢ Lis maobsbar in the.

[
I
I
Fublic Key | Private Key
I
I
I
[

1
Unencrypted message Encrypted message Unencrypted message
|

3.4.2 Pros and Cons of Public-Key Systems

Public-key systems have a clear advantage over symmetric algorithms: there is no need
to agree on a common key for both the sender and the receiver.

As seen in the previous example, if someone wants to receive an encrypted message, the
sender only needs to know the receiver's public key (which the receiver will provide;
publishing the public key in no way compromises the secure transmission).

As long as the receiver keeps the private key secret, no one but the receiver will be able
to decrypt the messages encrypted with the corresponding public key.

This is due to the fact that, in public-key systems, it is relatively easy to compute the
public key from the private key, but very hard to compute the private key from the
public key (which is the one everyone knows). In fact, some algorithms need several
months (and even years) of constant computation to obtain the private key from the

public key.

3.4.2 Pros and Cons of Public-Key Systems

Another important advantage is that, unlike symmetric algorithms, public-key
systems can guarantee integrity and authentication, not only privacy. The basic
communication seen above only guarantees privacy. We will shortly see how
integrity and authentication fit into public-key systems.

The main disadvantage of using public-key systems is that they are not as fast as
symmetric algorithms.

Private Key

Private Key

Generator
Computationally Simple

Public Key

O—w

B

Public Key
Public Key
Generator ——%
Computationally Simple
Private Key

Public Key
Cracker S {é}c—m
VERY HARD

25

3.5 Merkle’s Knapsack Algorithm

* The first algorithm for generalized public-key encryption was the knapsack algorithm
developed by Ralph Merkle and Martin Hellman.

* |t could only be used for encryption, although Adi Shamir later adapted the system for
digital signatures.

* Knapsack algorithms get their security from the knapsack problem, an NP complete
problem. Although this algorithm was later found to be insecure, it is worth examining
because it demonstrates how an NP-complete problem can be used for public-key
cryptography.

3.5 Merkle’s Knapsack Algorithm

The knapsack problem is a simple one. Given a pile of items, each with different
weights, is it possible to put some of those items into a knapsack so that the knapsack
weighs a given amount?

More formally: Given a set of values M1, M2,..., Mn, and a sum S, compute the values
of bi such that S=b1M1+ b2M2+ ...+ bnMn

The values of bi can be either zero or one. A one indicates that the item is in the
knapsack; a zero indicates that it isn’t.

For example, the items might have weights of 1, 5, 6, 11, 14, and 20. You could pack a
knapsack that weighs 22; use weights 5, 6, and 11. You could not pack a knapsack that
weighs 24. In general, the time required to solve this problem seems to grow
exponentially with the number of items in the pile.

The idea behind the Merkle-Hellman knapsack algorithm is to encode a message as a
solution to a series of knapsack problems. A block of plaintext equal in length to the
number of items in the pile would select the items in the knapsack (plaintext bits
corresponding to the b values), and the ciphertext would be the resulting sum.

3.5 Merkle’s Knapsack Algorithm

 What is the easy knapsack problem? If the list of weights is a superincreasing sequence,
then the resulting knapsack problem is easy to solve. A superincreasing sequence is a
sequence in which every term is greater than the sum of all the previous terms. For
example, {1, 3, 6, 13, 27, 52} is a superincreasing sequence, but {1, 3, 4, 9, 15, 25} is not.

* The solution to a superincreasing knapsackis easy to find. Take the total weight and
compare it with the largest number in the sequence. If the total weight is less than the
number, then it is not in the knapsack. If the total weight is greater than or equal to the
number, then it is in the knapsack.

* Reduce the weight of the knapsack by the value and move to the next largest number in
the sequence. Repeat until finished. If the total weight has been brought to zero, then
there is a solution. If the total weight has not, there isn’t.

3.5 Merkle’s Knapsack Algorithm

For example, consider a total knapsack weight of 70 and a sequence of weights of {2, 3, 6,
13, 27, 52}.

The largest weight, 52, is less than 70, so 52 is in the knapsack.

e Subtracting 52 from 70 leaves 18. The next weight, 27, is greater than 18, so 27 is not in
the knapsack. The next weight, 13, is less than 18, so 13 is in the knapsack.

e Subtracting 13 from 18 leaves 5. The next weight, 6, is greater than 5, so 6 is not in the
knapsack.

e Continuing this process will show that both 2 and 3 are in the knapsack and the total
weight is brought to 0, which indicates that a solution has been found.

* Were this a Merkle-Hellman knapsack encryption block, the plaintext that resulted from
a ciphertext value of 70 would be 110101.

3.5.1 Creating the Public Key from the Private Key of

Merkle’s Knapsack Algorithm

To get a normal knapsack sequence, take a superincreasing knapsack sequence, for
example {2, 3, 6, 13, 27, 52}, and multiply all of the values by a number n,mod m. The
modulus should be a number greater than the sum of all the numbers in the sequence:
for example, 105. The multiplier should have no factors in common with the modulus:
for example, 31.

The normal knapsack sequence would then be

2 *31 mod 105 =62

3 * 31 mod 105 =93

6 * 31 mod 105 = 81
13 * 31 mod 105 = 88
27 * 31 mod 105 = 102
52 * 31 mod 105 =37

The knapsack would then be {62, 93, 81, 88, 102, 37}.
The superincreasing knapsack sequence is the private key.

The normal knapsack sequence is the public key.

3.5.2 Encryption for Merkle’s Knapsack Algorithm

To encrypt a binary message, first break it up into blocks equal to the number of items in
the knapsack sequence. Then, allowing a one to indicate the item is present and a zero to
indicate that the item is absent, compute the total weights ofthe knapsacks—one for every
message block.

For example, if the message were 011000110101101110 in binary, encryption using the
previous knapsack would proceed like this:

message = 011000 110101 101110

011000 corresponds to 93 + 81 =174

110101 corresponds to 62 + 93 + 88 + 37 = 280
101110 corresponds to 62 + 81 + 88 + 102 = 333

The ciphertext would be
174,280,333

3.5.3 Decryption for Merkle’s Knapsack Algorithm

e A legitimate recipient of this message knows the private key: the original
superincreasing knapsack, as well as the values of n and m used to transform it into a
normal knapsack. To decrypt the message, the recipient must first determine n-1 such
that n(n-1) 1 (mod m). Multiply each of the ciphertext values by n-1 mod m, and then
partition with the private knapsack to get the plaintext values.

* In our example, the superincreasing knapsack is {2, 3, 6, 13, 27, 52}, m is equal to 105,
and n is equal to 31. The ciphertext message is 174, 280, 333. In this case n-1 is equal to
61, so the ciphertext values must be multiplied by 61 mod 105.

174 * 61 mod 105 =9 =3 + 6, which corresponds to 011000
280 * 61 mod 105=70=2+ 3 + 13 + 52, which corresponds to 110101

333 * 61 mod 105=48=2+6+ 13 + 27, which corresponds to 101110

* The recovered plaintext is 011000 110101 101110.

3.6 RSA Algorithm

One of the first successful responses to the challenge was developed in 1977
by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in
1978. The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned
supreme as the most widely accepted and implemented general-purpose
approach to public-key encryption.

* The RSA scheme is a block cipher in which the plaintext and ciphertext are

integers between (0) and (n — 1) for some (n). A typical size for (n) is (1024)
bits, or (309) decimal digits. That is, n is less than 2'%** | We examine RSA in
some detail, beginning with an explanation of the algorithm. Then we
examine some of the computational and cryptanalytical implications of RSA.

RSA makes use of an expression with exponentials. Plaintext is encrypted in
blocks, with each block having a binary value less than some number n. That
is, the block size must be less than or equal to 10g,(n) + 1 ; in practice, the
block size is I bits, where 2'<n <2, Encryption and decryption are of the
following form, for some plaintext block M and ciphertext block C.

3.6.1 Greatest Common Divisor (gcd)

The positive integer d is the greatest common divisor of integers a and b
denoted d=gcd(a,b) If

2 ltisadivisorof bothaand b

2 Any other divisor of a and b is a divisor of d
Example: gcd(8,12)=4, gcd(24,60)=12
Integers a and b are called relatively prime if gcd(a,b)=1
Computing gcd(a,b): Euclid’s algorithm

1 Based on the following fact: ged(a,b)=gcd(b,a mod b)
Euclid's Algorithm to compute gcd(a,b): Euclid(a,b)

2 If b=0 then return a

2 Else return Euclid(b,a mod b)

Note: the algorithm always terminates

1

34

3.6.2 Euclidean Algorithm

Example: d=gcd(1970,1066)

1970 = 1 x 1066 + 904 d= gcd(1066, 904)
1066 = 1 x 904 + 162 d= gcd(904, 162)
004 = 5 x 162 + 04 d= gcd(162, 94)
162 = 1 x 94 + 68 d= gcd(94, 68)
94 = 1 x 68 + 26 d= gcd(68, 26)
B8 =2x26+ 16 d= gcd(26, 16)
26=1x 16+ 10 d= ged(16, 10)
16=1x10+6 d=gcd(10, 6)
10=1x6+4 d=gcd(6, 4)
B=1x4+2 d=ged(4, 2)
4=2x2+0 d=2

Result: gcd(71970,1066)=2, i.e., the last honzero residue in the above
computation

3.6.3 RSA Terms

The following notation is used consistently throughout:

* A public key is represented by (e).

* A private key is represented by (d).

* Plaintext message is represented by (M).

* Ciphertext message is represented by (C).

* Public key pair PU = {e,n)

e Private key pair PR={d,n|

e Parameter is used to adjust RSA algorithm (n).

C = M modn
M = C%'modn = {M‘"}d mod n = M*“mod n

Both sender and receiver must know the value of n. The sender knows the
value of e, and only the receiver knows the value of d. Thus, this is a public-key
encryption algorithm with a public key of PU = [e, n} and a private key of PR = {d, n}.
For this algorithm to be satisfactory for public-key encryption, the following require-
ments must be met.

. It is possible to find values of e, d, n such that M** mod n = M for all M < n.

2. It is relatively easy to calculate M® mod n and C? mod n for all values of M < n.

3. It 1s infeasible to determine d given e and n.

36

3.6.4 RSA Key Generation

Key Generation Alice

Select p.g p and g both prime.p =g

Calculate n =p X gq
Calcuate p(n)=(p —1)(g—1)

Select integer ¢ ged (b(n).e)=1:1 < e < Pp(n)
Calculate d d=¢1 (mod ¢(mn))

Public key PU = le. n)

Private key PR =|d.n|

Select two prime numbers, p =17 and g =11.
Calculate n=pg=17 x 11 = 187,
Calculate d(n)=(p—1)(g—1)=16x 10=160.

Select e such that e is relatively prime to ¢(n) = 160 and less than ¢(n). we
choose e="T.

Determine d such that de=1 (mod 160) and d < 160. The correct value is d =23,
because 23 x 7= 161 = (1 x 160) + 1: d can be calculated using the extended
Euclid’s algorithm -

37

3.6.5 RSA Encryption and Decryption

Encryption by Bob with Alice’s Public Key
Plaintext: M<n
Ciphertext: C=M"modn
Decryption by Alice with Alice’s Public Key
Ciphertext: C
Plaintext: M=C'mod n

The RSA Algorithm

Encryption

Plaintext

88

> ESG;{mad= 1

f

Decryption

| |
PU =T, 187
Example of RSA Algorithm

Plaintext
—= 88

Ciphertext
! llgigmod= 88 -
|I ."I
PR = 23,187

38

3.6.6 RSA Encryption and Decryption

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187].
The example shows the use of these keys for a plaintext input of M = 88. For encryp-
tion, we need to calculate C = 887 mod 187. Exploiting the properties of modular
arithmetic, we can do this as follows.

887 mod 187 = [(88%* mod 187) x (882 mod 187)
% (88! mod 187)] mod 187

88! mod 187 =88

882 mod 187 = 7744 mod 187 =77

88% mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 112 mod 187:

11%° mod 187 =[(11! mod 187) x (11%2 mod 187) x (11* mod 187)
% (11% mod 187) % (11% mod 187)] mod 187

11! mod 187 =11

11> mod 187 = 121

11* mod 187 = 14,641 mod 187 =55
11® mod 187 =214,358,881 mod 187 =
1122 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88

.
.

[y

39

©)

Public key

Sender

® |

Plaintext P

ecimal string

@ ¥

Blocks of numbers
PolPo e s

@ L

€. "

-

n = pg

O]

Private key

Ciphertext C

C, =P, "modn
C,=P,"mod n

Transmit

D

d, n -

d =e ! mod gin)
gln)=ip—1)g - 1)

@ n=pq

ep. q

1

Random number
generator

Recovered
decimal text

P,=C,"modn
P,=C,Ymodn

@
e=11

n=11023

3.6.7 RSA Processing of Multiple Blocks

Sender

® |

How_are v

NS

3314 22 62 00 17 04 62 24 14 20 66

@ y

P, =3314 P,=2262 P, =0017

P, = 0462 P, =2414 P, =2066

S, ¥

F 3

11023 = 73x151

®

d = 5891
n =11023

C, = 3314" mod 11023 = 10260

C,=2262" mod 11023 = 9489
o] C.=17"mod 11023 = 1782

C, = 462" mod 11023 = 727

C, =2414" mod 11023 = 10032

C, = 2006 mod 11023 = 2253

Transmit

Q

R

11023 =T3x 51

5891 = 117" mod 10800
10800 = (73 - 10151 - 1)

j—————— Receiver

(a) General approach

RSA Processeing of Multiple Blocks

e=11
P=73g=151

i

Random number
generator

» P, = 102601 mod 11023 = 3314
P, = 9489° mod 11023 = 2262
P, = 178251 mod 11023 = 0017
P, =727 mod 11023 = 0462
P, = 100325 mod 11023 = 2414
P, = 22531 mod 11023 = 2006

Receiver

(b) Example

3.6.8 Security of RSA Algorithm

Four possible approaches to attacking the RSA algorithm are
e Brute force: This involves trying all possible private keys.

e Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

e Timing attacks: These depend on the running time of the decryption algorithm.

e Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

3.6.8 Security of RSA Algorithm

Progress in Factorization

Number of Approximate Date
Decimal Digits | Number of Bits Achieved MIPS-Years Algorithm

100 332 April 1991 7 Quadratic sieve

110 365 April 1992 75 (uadratic sieve

120 398 June 1993 830 (uadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000 Generalized number field sieve
140 465 February 1999 2000 Generalized number field sieve
155 512 Aungust 1999 8000 Generalized number field sieve
160 530 April 2003 — Lattice sieve

174 576 December 2003 — Lattice sieve

200 663 May 2005 — Lattice sieve

42

3.6.8 Security of RSA Algorithm

MIPS-vears needed to factor

107

1 []ZI]

1ot

't

1o

1o

Il

L0#

10®

Lo

L0?

Lo”

/ L
/ =
L General number /
field sieve /
1eld siew .,\ / / _,.--""’
‘/ ~
/ f/\
/ / \
/ / .
/'/ Special number
B / field sieve
I / 5
00 B00 1000 1200 1400 1600 1800 2000
Rits

MIPS-vears Needed to Factor

43

3.6.9 Procedure for Picking Random Number

The procedure for picking a prime number is as follows:
1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).
2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter.
If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

In next lecture, we will explain how:
1. To do primality test using Miller-Rabin method.

2. To find modular inverse using extended Euclid’s algorithm.

End of Chapter 3/Partl

